
Ontology-Based XQuery’ing of XML-Encoded

Language Resources on Multiple Annotation Layers

Georg Rehm1, Richard Eckart2, Christian Chiarcos3, Johannes Dellert1

University of Tübingen, Germany1 Technische Universität Darmstadt, Germany2 University of Potsdam, Germany3

SFB 441: Linguistic Data Structures Department of English Linguistics SFB 632: Information Structure
Nauklerstr. 35, Tübingen Hochschulstr. 1, Darmstadt Karl-Liebknecht-Str. 24-25, Potsdam

Corresponding author: georg.rehm@uni-tuebingen.de

Abstract

We present an approach for querying collections of heterogeneous linguistic corpora that are annotated on multiple layers using arbitrary
XML-based markup languages. An OWL ontology provides a homogenising view on the conceptually different markup languages so
that a common querying framework can be established using the method of ontology-based query expansion. In addition, we present a
highly flexible web-based graphical interface that can be used to query corpora with regard to several different linguistic properties such
as, for example, syntactic tree fragments. This interface can also be used for ontology-based querying of multiple corpora simultaneously.

1. Introduction

Annotated linguistic corpora can be used in several differ-
ent scenarios: they can be employed in machine learning
contexts to serve as training data, they can be used to build
language models based on statistical properties, or they can
serve as resources in computer-assisted language learning
software. In fact, there are so many possible ways in which
corpora can be used effectively that, nowadays, their initial
purpose has become overshadowed. Traditionally, linguists
compiled corpora in order to answer research questions on
the basis of empirical evidence. After a corpus had been
compiled, it could be analysed using statistical methods.

We are concerned with devising a web-based corpus plat-
form for a collection of ca. 60 heterogeneous linguistic cor-
pora. One of the obstacles we are confronted with is provid-
ing homogeneous means of accessing this very large col-
lection of diverse and complex linguistic resources. The
user interface does not only have to generalise over several
heterogeneous annotation formats, it has to be intuitively
usable for linguists without expertise in XML, querying
standards such as XQuery, or even the original markup lan-
guages. In other words, we want to lay a technical foun-
dation for the interoperability and reusability of annotated
linguistic corpora. We would like to enable academics who
are not interested in the corpus annotation specifics to log
onto the platform and to explore as well as to query the
available corpora in an efficient and simple way.

This article is a follow-up to (Rehm et al., 2007) and
presents several new results. Section 2 briefly highlights
the most important properties of data formats for linguis-
tic corpora and our generic data model. Section 3 sketches
the general approach, our system architecture, and the pro-
cess flows. The following sections discuss the platform’s
query interface: first, we illustrate the technical aspects of
querying multi-rooted trees (section 4). We subsequently
introduce an ontology-based approach for homogenising
the heterogeneous markup languages (section 5). Finally,
we describe the browser-based graphical interface and the
output and visualisation modules (section 6).

2. A Homogeneous Data Model

Since the late 1990s, practically all corpus annotation for-
mats have been realised as XML markup languages (Ide et
al., 2000; Sperberg-McQueen and Burnard, 2002; Lehm-
berg and Wörner, 2007). They come in two different
flavours: traditionally, most corpus markup languages form
hierarchies that are expressed by nested XML element trees
(e. g., for the representation of syntactic constituents or doc-
ument structures). In stark contrast to hierarchical data for-
mats are markup languages that anchor a data set to a time-
line, primarily used for spoken language (Bird and Liber-
man, 2001). In timeline-based formats such as Exmaralda
(Schmidt, 2005), arcs can be drawn from one anchor to an-
other point on the timeline. However, these structures are
not represented by nested XML element-trees, but with the
help of attribute-value pairs. At the same time, both ap-
proaches usually encode several annotation layers concur-
rently, for example, information on morphological, syntac-
tic, semantic, and pragmatic structures.
In our project we have to deal with both hierarchical and
timeline-based corpora and we have to provide the means
for enabling users to query both types of resources in a uni-
form way. In fact, the original annotation format is more
or less irrelevant to the user, as the graphical user interface
and the underlying technology abstract from any idiosyn-
crasies and peculiarities of the original data formats. We
use an approach that is able to achieve the abovementioned
goals (Dipper et al., 2006; Schmidt et al., 2006; Wörner
et al., 2006) and that can be compared to the NITE Ob-
ject Model (Carletta et al., 2003). We developed a tool that
semi-automatically splits hierarchically annotated corpora
that typically consist of a single XML document instance
into individual XML files, so that each file represents all
the information related to a single annotation layer (Witt
et al., 2007; Rehm et al., 2008); this approach guarantees
that overlapping structures can be represented straightfor-
wardly. Timeline-based corpora are processed using an-
other tool in order to separate the graph annotations that are
also stored in individual XML files (Witt et al., 2007). Our
approach enables us to represent arbitrary types of XML-
annotated corpora as individual XML element trees. These

Semi−automatic

processing

annotation layer each

that encapsulate a specific

Individual XML files

XML database

Physical layer

(specific XML tag sets)

Corpus

Format x Format y Format z
(tag set) (tag set) (tag set)

Conceptual

layer

Formal OWL

ontologies

extensive manual analysis

of conceptual annotation layers

semi−automatic processing

of physical annotation layer

arbitrary XML−

based corpora

Ontology of

linguistic terms

and concepts

ToolTool

multi−rooted trees multi−rooted trees multi−rooted trees

Tool

Corpus

Corpus 2

3

1

1 2 3

Annotation Annotation Annotation
schema z schema y schema x

model z model y model x

Reference Ontology (Interface Model)

L
in

kin
g

L
in

kin
g

L
in

kin
g

Annotation Annotation Annotation

Figure 1: The two main corpus processing workflows

multi-rooted trees are represented as regular XML docu-
ment instances, but, as a single corpus comprises multiple

files, there is a need to go beyond the functionality offered
by typical XML tools in order to enable us to process mul-
tiple files, as regular tools work with single files only.

3. System Architecture

A corpus to be imported into our corpus platform has to be
analysed manually first (figure 1). Depending on its markup
language, the XML document instance is transformed into
multi-rooted trees.
Some corpora can be transformed using simple XSLT
stylesheets, while other corpora have to be processed us-
ing a custom set of tools: corpora annotated based on the
hierarchical model are analysed by a tool that enables us to
map XML elements, attributes and textual PCDATA con-
tent onto one or more annotation layers (Witt et al., 2007).
As soon as this mapping exists, the annotation layers can
be exported as XML documents. A second tool can be used
to split timeline-based corpora into a set of multi-rooted
trees. Finally, these XML files are imported into an XML
database (we currently use eXist but plan to evaluate Mon-
etDB/XQuery, Qizx/db, and Sedna soon). A third tool an-
chors all files to a set of primary data in order to allow
query-time coordination between these individual files that
represent a single-rooted tree each.

XML−Corpus−1
1

XML−Corpus−1
2

XML−Corpus−1
3

XML−Corpus−1
4

XML−Corpus−3
3

XML−Corpus−3
4

XML−Corpus−2
1

XML−Corpus−2
2

XML−Corpus−2
3

XML−Corpus−2
4

XML−Corpus−3
2

XML−Corpus−3
1

Intermediate

query representation

Graphical user

interface

Free XQuery

input

therefore, we need to extend the database to enable

each corpus consists of a set of multi−rooted trees,

XQuery statements to process multiple files (see fig. 1)

Output (XML)

annotations

linguistic

Ontology of

System database

(corpus metadata,

filenames, user

information etc.)

XQuery Engine

Input (XQuery)

query expansion

Visualisation Module 1 (e.g., KWIC)

Visualisation Module 2 (e.g., syntax trees)

Visualisation Module 3 (e.g., matrix)

OntoClient

XML database

Back−end (partial architecture)

Front−end (browser)

Figure 2: Architecture of the web-based query interface

At the same time, the elements and attributes used in the
markup languages are analysed and incorporated into a set

of ontologies that encapsulate knowledge about linguistic
terms and concepts. The ontologies are used to generalise
over the specific and, at times, idiosyncratic names and la-
bels used in the corpus markup languages and to provide
a coherent, unified, and homogeneous perspective on the
large set of heterogeneous corpora.
The web-based query interface we are currently develop-
ing has several requirements. For this paper the two most
important issues are the implementation of a mechanism
that enables XQuery queries that work on multi-rooted trees
(section 4) and the integration of the ontologies of linguistic
annotations into the process of building an XQuery state-
ment (section 5). Our web-based GUI can be intuitively
applied by linguists and other interested parties who know
neither XML, XQuery, nor the XML-based markup lan-
guages used in the original corpora (section 6). Figure 2
shows the architecture of the query interface. Figures that
explain additional aspects of the system can be found in
(Rehm et al., 2008).

4. Querying Multi-Rooted Trees

As each annotation layer is contained in one XML docu-
ment, a corpus represents a special form of a multi-rooted
tree, i. e., a collection of trees that do not share nodes except
for the leaves that contain the annotated primary data. An-
noLab (Eckart and Teich, 2007) is an XML/XQuery-based
corpus query and management framework that was specifi-
cally designed to deal with multi-rooted trees.
To avoid problems regarding projectiveness and overlap-
ping segments, AnnoLab uses a stand-off adaptation of
the XML data-model. This adaptation substitutes the text-
nodes from the XML data-model using segments serving
as placeholders for the signal (content), thus functioning as
stand-off anchors. A segment addresses a signal using start
and end offsets as well as a signal identifier. The remainder
of the XML data-model remains untouched and compatible
with standard XPath and XQuery.
The native XML database eXist, written in Java, is cur-
rently used as a storage and query host because it is Open
Source software and it offers an easy integration with An-
noLab which is also implemented in Java.

4.1. XQuery Extensions

To access signals and to perform queries across multiple
layers, XQuery extensions are necessary. These fall into
the categories signal access and segment coordination.

4.1.1. Signal Access

Signal access extensions deal with retrieving the signal ad-
dressed by a particular segment and with finding parts of
signals that correspond to a specific search pattern. There
are three typical usage scenarios:

• Fetch the content addressed by segments.
get-text(N) gets all content addressed by seg-
ment descendants of N.

• Retrieve segments that address content that matches
a pattern. find-text(S, p) generates segments for
matches of p within the signals S.

• Match annotation elements against content. By re-
peating text inside segments, this is directly support-
able by the eXist native full-text index which is ac-
cessible through some eXist-specific operators, e. g.,
//tok[. &= ’will’] searches for all tok elements
that contain the word will. These operators speed up
search but use an inverted index that is generated us-
ing a tokenizer which does not necessarily match the
tokenization defined by the annotation.

4.1.2. Segment Coordination

These functions perform comparisons and calculations on
segments. The extensions can be used to specify the desired
relations between segments originating from different anno-
tation layers and, thus, to coordinate different layers. The
function containing(X, Y) illustrates the general princi-
ple: it takes two sets of elements X and Y. For each element
in the two lists a cover segment is generated starting at the
smallest offset and ending at the largest offset referenced
by any segment below them. Finally, any element from X is
returned which contains any of the elements in Y.

4.2. Test Corpus

To illustrate querying and to gather initial performance re-
sults we devised eight queries based on the German tree-
bank TüBa-D/Z (Telljohann et al., 2004). For this exper-
iment our version of TüBa-D/Z consisting of 1285 docu-
ments was split into six layers (7710 XML files): (1) Clause

– sentences, clauses; (2) Discourse – anaphora, coreference
relations; (3) Field – topological fields; (4) Lexical – tok-
enization, parts-of-speech; (5) Named Entities; (6) Phrase

– phrase structure.

4.3. Example Queries

The queries PQ1–PQ5, based on tests presented by (Dipper
et al., 2007a), are single-layer queries. PQ1 and PQ2 oper-
ate on the Lexical layer, the others use the Phrase layer.

• PQ1 – Find all sentences that contain the word kam.

• PQ2 – Find all sentences that do not contain kam.

• PQ3 – Find all noun phrases. Return the references to
those noun phrases.

• PQ4 – Find all noun phrases. Return the subtrees dom-
inated by these noun phrases.

• PQ5 – Find all noun phrases dominated by a verb
phrase. Return the subtrees dominated by those NPs.

Figure 3 shows PQ5. First, all XML documents of the
Phrase layer are fetched. The function ds:layer() is a
shortcut to fetch all XML documents that belong to the
specified layer. Layers are stored in the database as one
XML file per layer per signal. Next, the noun phrase nodes
(NX) that are dominated by verb phrase nodes (VXFIN and
VXINF) are fetched. Finally, the branches dominated by the
NX nodes are returned, each encapsulated in a match tag.
AnnoLab pre-declares several namespace prefixes to house
extension functions, e. g., ds (datastore functions), seq

(segment coordination functions), and oc (OntoClient re-
lated functions).

declare namespace leveler="urn:xmlns:sfb441:leveler";

element result {

let $l := ds:layer(’Phrase’)

for $s in $l//ntNode[

@leveler:category=’VXFIN’ or

@leveler:category=’VXINF’

]/ntNode[@leveler:category=’NX’]

return element match { $s }

}

Figure 3: PQ5: Find all NPs dominated by a VP

The queries TUEBA1 and TUEBA2 are simple multi-layer
queries. They involve the Lexical and Field layers and use
the custom XQuery function seg:containing() to relate
annotations from both layers to one another. TUEBA2 ad-
ditionally uses the function oc:expand() to retrieve the
possible verb tags from an embedded OntoClient.

• TUEBA1 – Find all occurrences of the verb will in
the Vorfeld.

• TUEBA2 – TUEBA1 using OntoClient (see section 5)
to expand the concept Verb into possible verb tags.

The query TUEBA2 (figure 4) first fetches all instances of
the verb will from the Lexical layer because token and
part-of-speech information is stored there. The function
oc:expand() is used to get all possible POS tags for verbs
(see section 5). In addition, we use the eXist full-text in-
dex operator &= to find instances of the word will. Next,
all Vorfeld annotations (VF tag) are fetched from the Field

layer. Finally, all Vorfeld annotations are filtered out that
contain one of the will instances we found in the first step
and returned surrounded by a match tag.

declare namespace leveler="urn:xmlns:sfb441:leveler";

let $verb := ds:layer(’Lexical’)//tok

[pos/@leveler:text = oc:expand(’Verb’)]

[.//orth &= ’will’]

let $vf := ds:layer(’Field’)//ntNode

[@leveler:category=’VF’]

let $res := seq:containing($vf, $verb)

return element result {

for $r in $res return element match { $r }

}

Figure 4: TUEBA2: Find the verb will in the Vorfeld
using an embedded OntoClient

The query BQ2 (figure 5) is based on Q2 presented by (Bird
et al., 2006). It makes use of the following-sibling axis.

• BQ2 – Find noun phrases that are immediate following
siblings of a verb.

Since POS and phrase structures are kept in different lay-
ers, we cannot directly search for noun phrases following
a verb. First we fetch all verb tokens from the Lexical

layer. Next we fetch all VPs from the Phrase layer. The
TüBa-D/Z guidelines mandate that any verb is located un-
der a VP which would then be sibling to the NP. To make
sure that there is no additional content in the VP we use
seq:same-extent to join the VPs on the verbs we fetched
before. On the resulting nodes we search for all immedi-
ately following siblings that are NPs. We use the custom
function tree:following-sibling because in eXist the
following sibling axis is rather slow (section 4.4). Finally,
the resulting NPs are returned, wrapped in match tags.

declare namespace lvlr="urn:xmlns:sfb441:leveler";

element result {

let $verbs := ds:layer(’Lexical’)//tok[

starts-with(pos/@lvlr:text, "V")]

let $VPs := ds:layer(’Phrase’)//orth

/parent::ntNode[starts-with(@lvlr:category,’VX’)]

let $candVPs := seq:same-extent($VPs, $verbs)

let $res := tree:following-sibling($candVPs,1)[

@lvlr:category = ’NX’]

for $s in $res

return element match { $s }

}

Figure 5: BQ2: Find NPs that are immediate following sib-
lings of a verb

4.4. Performance Evaluation

Using the queries described above we carried out perfor-
mance measurements on a Pentium IV 3.0 GHz with two
80 GB SATA 7200 rpm hard disks (RAID 1) and 2 GB
memory of which 1 GB was allocated to AnnoLab running
an embedded eXist.
Table 1 shows the normalized run-time results. The queries
were run on sets of 100, 200, 300, 400, 500, and 1000 doc-
uments to see how they scale. Numbers were normalized
to milliseconds per 1000 tokens (t/kT). Each query was run
ten times in a row after a fresh start of the database and the
minimum, average, and maximum run-times were taken.
The maximum time was always obtained in the first run
which included the initial start-up of the database and initial
caching. In an optimally scaling case, the minimum t/kT
would remain constant for the different test-set sizes. For
the queries BQ2, PQ1, PQ3, PQ4, TUEBA1, and TUEBA2
we observe relatively stable minimum times – they scale
quite well. Interestingly for some of these queries the aver-
age time even drops with a growing test-set size. The query
PQ2 scales very bad. Its maximum time grows rapidly with
growing test-set size (up to almost three hours for 1000 doc-
uments!) even though its minimum time remains rather low
(about 30 seconds for 1000 documents).
Table 2 shows the absolute run-times of the queries. We
would like to have near interactive (at most 3 seconds) re-
sponses for queries on the whole TüBa-D/Z corpus (1285
documents), but the results show clearly that no query re-
turns within this desired timeframe.
The queries are supported by QName indices defined on
the relevant attributes and by the eXist native full-text en-
gine. The segment coordination functions are currently not
backed by a specialized index as described by, for example,

(Alink et al., 2006), however, we use a fast linear algorithm
for seg:containing and seg:same-extent.
We believe that part of the poor performance is due to
eXist currently not having a statistics-backed query opti-
mizer. For example, to find instances of the word will

eXist uses the full-text index if we specify the &= opera-
tor and then uses the element QName index on orth to find
the element by name, or it only uses the QName index if
we use the traditional = operator. However, eXist does not
check if there might be only very few instances of orth

and many instances of will, so it does not prefer searching
for orth first and falling back to traditional = comparison
which might be faster. The lack of a sophisticated query
optimizer also makes it difficult to write efficient queries.
eXist can optimize XPath predicates but completely fails to
optimize XQuery WHERE statements which would allow for
more readable queries.
About one third of BQ2 is spent navigating the following-
sibling axis. Using following-sibling::*[1] to access
the immediate following sibling, eXists wastes a lot of time
expanding the complete following-sibling axis and only
then selecting the first one. The tree:following-sibling
function alleviates this by selecting only the n following
siblings, but instead of doing a batch lookup needs to go to
the database once for each VP node instead.
A challenge not covered by our example queries concerns
the marking of matches in the query result. The query
TUEBA2, for example, results in Vorfeld annotations. To
the user, however, we want to display whole sentences with
the matching Vorfeld tags highlighed within them. That
means we actually need to query for a sentence contain-
ing a Vorfeld containing the verb will and then mark the
Vorfeld node – a process which we do not know how to
perform efficiently in terms of XQuery. We would need an
extension function closely working together with the XML
serializer returning the results.
Because of issues such as highlighting of matches, indexed
full-text searching and indexed segment coordination an
efficient implementation of an XML-based corpus query
tool is hardly conceivable using W3C XQuery functional-
ity only. To improve performance, we have already started
evaluating alternative XML databases.

5. Creating XQuery Constraints

In order to provide a consistent approach for documenta-
tion and to enable a uniform query interface that applies
to different annotation formats, we built an ontology that
serves as a terminological reference, represented in OWL
DL. This reference model is based on the EAGLES recom-
mendations for morphosyntax, the general ontology for lin-
guistic description (Farrar and Langendoen, 2003), and the
SFB632 annotation standard (Dipper et al., 2007b). It cov-
ers reference specifications for word classes, and morpho-
syntax (Chiarcos, 2007), and is currently extended to syn-
tax and information structure.
For the sustainable operationalisation of existing annota-
tion schemes which then enables us to define annotation-
independent corpus queries, we employ the structured
model of ontologies of linguistic annotation (OLiA). The
core idea of the OLiA architecture is a clear separation

minimum average maximum

100 200 300 400 500 1000 100 200 300 400 500 1000 100 200 300 400 500 1000

BQ2 251 435 421 391 379 418 307 466 438 411 397 428 558 604 537 489 458 474
PQ1 3 14 15 30 30 31 29 43 51 90 110 138 239 284 372 618 810 1093
PQ2 45 56 65 71 74 78 95 395 861 1231 1563 2897 429 3376 7961 11629 14931 28253
PQ3 32 38 36 37 37 38 71 59 51 54 52 51 297 195 165 160 147 133
PQ4 42 47 44 47 49 50 71 62 54 56 57 55 209 132 107 106 95 78
PQ5 5 8 8 8 9 12 24 22 16 16 18 16 95 70 52 53 52 40
TUEBA1 15 21 24 24 23 23 56 45 41 42 40 38 261 180 146 159 164 138
TUEBA2 113 120 118 118 116 119 153 142 135 131 129 130 361 261 215 214 207 179

Table 1: Query performance in milliseconds per 1000 tokens

minimum average maximum

100 200 300 400 500 1000 100 200 300 400 500 1000 100 200 300 400 500 1000

BQ2 7.7s 31.9s 47.2s 55.9s 67.9s 2.5m 9.4s 34.2s 49.1s 58.6s 1.1m 2.6m 17.1s 44.3s 1.0m 1.2m 1.4m 2.9m
PQ1 86ms 1.0s 1.6s 4.3s 5.4s 11.4s 0.9s 3.2s 5.8s 12.9s 19.7s 50.5s 7.3s 20.9s 41.7s 1.5m 2.4m 6.7m
PQ2 1.3s 4.1s 7.3s 10.2s 13.2s 28.4s 2.9s 29.0s 1.6m 2.9m 4.7m 17.6m 13.1s 4.1m 14.9m 27.7m 44.6m 2.9h
PQ3 1.0s 2.8s 4.0s 5.3s 6.7s 13.8s 2.2s 4.3s 5.8s 7.7s 9.4s 18.5s 9.0s 14.3s 18.5s 22.9s 26.4s 48.s
PQ4 1.3s 3.4s 4.9s 6.7s 8.8s 18.4s 2.2s 4.5s 6.1s 8.0s 10.3s 20.0s 6.4s 9.7s 12.0s 15.1s 17.0s 28.5s
PQ5 0.1s 0.6s 0.9s 1.2s 1.7s 4.4s 0.7s 1.6s 1.7s 2.4s 3.3s 5.9s 2.9s 5.1s 5.9s 7.6s 9.3s 14.7s
TUEBA1 0.5s 1.5s 2.7s 3.4s 4.2s 8.4s 1.7s 3.3s 4.6s 6.0s 7.2s 13.7s 8.0s 13.2s 16.4s 22.8s 29.3s 50.4s
TUEBA2 3.5s 8.8s 13.2s 16.8s 20.9s 43.6s 4.7s 10.4s 15.2s 18.7s 23.2s 47.4s 11.0s 19.1s 24.1s 30.5s 37.0s 1.1m

Table 2: Absolute query run time results

between the information drawn from the annotation docu-
mentation and its interpretation with respect to a reference
terminology. This conceptual separation guarantees trans-
parency and sustainable maintenance of the mapping be-
tween annotations and reference terminology.
The reference model formalises the reference terminology,
in that it represents an overarching terminological back-
bone that different annotations originating from different
formats and annotation schemes are linked to. It consists
of three components: a taxonomy of linguistic categories
(modelled as OWL classes, e. g., NOUN, COMMONNOUN),
a taxonomy of grammatical features (OWL classes, e. g.,
ACCUSATIVE), and relations (OWL properties, e. g., HAS-
CASE). An annotation model is an ontology that repre-
sents one specific annotation scheme. We built, among
others, annotation models for the SFB632 annotation for-
mat (Dipper et al., 2007b) used in typological research,
TIGER/STTS (Schiller et al., 1999; Brants et al., 2003),
two tag sets for Russian and five tag sets for English, e. g.,
Susanne (Sampson, 1995), and PTB (Marcus et al., 1993).
The linking between annotation models and the reference
model is specified in a separate OWL file that imports the
reference model and one annotation model.

5.1. Annotation Model

For every tag set, a separate annotation model is speci-
fied which can be seen as a formal interpretation of the
annotation scheme and its documentation (figure 1). As
an example, consider the Susanne tag APPGf for her used
as an attributive pronoun and its presentation in the cor-
responding annotation model in the lower part of fig-
ure 6. The original tag corresponds to an individual that
has the tag (hasTag) APPGf. Moreover, it is charac-
terised by several properties specifying grammatical fea-
tures, such as case, gender, person and number. Beyond
this relational structure, the annotation model also has a
hierarchical structure, which is motivated by the system-
atics of tag formation and by conceptual considerations.
Tags beginning with APPG are grouped together under the
class AttributivePossessivePronoun, and tags begin-
ning with AP(P) under AttributivePronoun. The class
Tag serves as top-level class for part-of-speech tags in

Figure 6: The Susanne tag APPGf, its representation within
the annotation model and linking with the reference model

the Susanne annotation model, while the top-level class
GrammaticalFeature dominates a similar hierarchy of
classes of grammatical features.
To align tags with specific layers of annotation, the class
Tag is assigned the property hasTier with the value pos

which is inherited by all POS tags. APPGf is, thus, charac-
terised by grammatical features, a specific position in a tax-
onomy of grammatical categories, and by properties speci-
fying its actual form and the annotation layer.

5.2. Reference Model

The reference model is the terminological backbone of the
ontology. It is intended to be a generalisation over the dif-
ferent annotation models, and for the Susanne tag set and
APPGf as an example, the conceptualisations of the refer-
ence model and the annotation model are basically identical
(figure 6) – though more complicated constellations occur.
An important difference between the reference model and
similar proposals (e. g., GOLD) is that concepts in the ref-
erence model may be overlapping, as different conceptu-
alisations are possible. As such, an attributive possessive
pronoun can be syntactically regarded as a determiner, but
morphologically (and semantically) as a pronoun. Here,

different annotation schemes rely on different conceptual-
isations – often undocumented – but due to the possible
overlap between reference model concepts, the reference
model is compatible with either of these possibilities.

5.3. Linking Annotation Model and Reference Model

The reference model and the annotation models are self-
contained ontologies. Therefore, the linking between them
has to be made explicit. We apply separate OWL files
which import the reference model and annotation mod-
els. For every annotation model a link file exists that
represents the relationship between the annotation model
concepts and the reference model concepts by means
of rdfs:Descriptions pertaining to rdfs:subClassOf-
statements. References between annotation model concepts
and reference model concepts are possible, thus making in-
stances of annotation model concepts indirect instances of
reference model concepts.
In figure 6, the ⊆ edges between reference and annotation
model represent the linking. However, it is slightly sim-
plified. As an attributive pronoun serves semantically as a
determiner, but syntactically as a pronoun, the annotation
model concept AttributivePronoun is characterised as a
subclass of both Determiner and Pronoun, etc.
The reference model integrates a limited number of anno-
tation schemes, and, thus, it is specific to the needs of the
corresponding projects. Therefore, a potential user may be
interested to operate on a terminological resource other than
the reference model described above, e. g., GOLD (Farrar
and Langendoen, 2003), OntoTag (de Cea et al., 2004), or
an OWL version of the DCR (Monachini et al., 2005).
For this purpose, the same linking mechanism may be ap-
plied, and these resources may be integrated as an external

reference model. For the morphosyntactic components of
GOLD, OntoTag, and the Data Category Registry, this link-
ing has been implemented. The internal reference model
mediates between resource or language-specific annotation
models and an external upper model. For the specification
of queries, definitions provided by an external reference
model may decrease the initial reluctance a user might have
to work with the ontology.

5.4. Ontology-Based Corpus Querying

Any tag used in an annotation scheme corresponds to an
indirect instance of a class in the reference model. Accord-
ingly, any tag from an annotation model can be retrieved
by a description in terms of OWL classes and properties
from the reference model. If multiple annotation models
are considered, such a description may be expanded into a
disjunction of tags from different tag sets.
For this task, the OntoClient was developed, a query pre-
processor implemented in Java. OntoClient uses Pellet, an
Open Source OWL DL reasoner, to retrieve the set of in-
dividuals conforming to a particular description in terms of
concepts and properties of the reference model (or an ex-
ternal reference model). From these individuals, the values
of the hasTag and the hasTier properties are determined
that represent the actual tag to be queried for and the an-
notation layer on which it is to be searched. Individuals
that lack these properties, e. g., the individual genitive in

figure 6, merely express grammatical features, and are ex-
cluded from the result set.
The function oc:expand() applied in figure 4 calls On-
toClient’s expand method with an ontological expression.
From the result set, a disjunction of tags (the values of the
hasTag property) are retrieved and processed. Therefore,
the query [pos/@leveler:text = oc:expand(’Verb’)]

in figure 4 returns the same results as a query for any sin-
gle tag for a verbal category as shown in figure 7. The
argument of oc:expand() is interpreted as a reference
model concept, but combinations of object properties and
grammatical feature concepts from the reference model
(hasCase(Accusative)), datatype properties, and string
values (hasTier("pos")) are also allowed, so are com-
plex expressions formed from these and the set operators
∩ (and), ∪ (or) and \ (without).

[pos/@leveler:text = ’VB’ or pos/@leveler:text= ’VBZ’

or ... or pos/@leveler:text= ’VAFIN’ or ... or

pos/@leveler:text=’V’ or ...]

Figure 7: Expanded oc:expand() from figure 4

With complex queries, large disjunctions can be avoided by
restricting their scope. The outcome of oc:expand() can
be restricted to POS tags as in (i) below. Also, as in (ii),
grammatical features can delimit the scope such as person,
number for will (1st/3rd.sg.ind.), queried in figure 4.

(i) oc:expand("Verb and hasTier(’pos’)")

(ii) oc:expand("Verb and (hasPerson(First) or

hasPerson(Third)) and hasNumber(Singular)")

This does not, however, rule out queries across different tag
sets. Figure 7 shows result tags originating from tag sets
such as PTB and STTS, while the query in figure 4 solely
requires information from the STTS tag set and its anno-
tation model. This restriction is handled by metadata for
any particular corpus. For corpora with different annota-
tion models, then, separate instantiations of the OntoClient
are initialized with exactly those annotation models that are
relevant for a particular corpus.

6. The Graphical Interface

We cannot expect our target users (i. e., linguists) to be pro-
ficient in XML-related querying languages such as XQuery.
Instead, we provide an intuitive user interface that gen-
eralises as much as possible from the underlying data
structures and querying methods actually used. Our sys-
tem makes heavy use of Ajax technologies (Asynchronous
JavaScript and XML) so that a dynamic, interactive, drag-
and-drop-enabled query interface can be provided. The
ontology of linguistic annotations (section 5) enables us
to provide abstract representations of linguistic concepts
(e. g., noun, verb, preposition etc.) that may have a specific
set of features; operands can be used to glue together the
linguistic concepts by dragging and dropping these graphi-
cal representations onto a specific area of the screen, build-
ing a query step by step. We also provide several output
and visualisation modules for query results, e. g., queried
corpus subsets that contain syntactic trees can be visualised
as trees, and data that is modelled using a timeline-based
approach is displayed in a tabular fashion.

Figure 8: The tree fragment query editor

Figure 9: The tree fragment query editor

The graphical front-end is completely implemented in
JavaScript extended by the Prototype Ajax Framework
(http://www.prototypejs.org) and the effects library
script.aculo.us (http://script.aculo.us). One of its
central components is a graphical tree fragment query edi-
tor that allows the user to submit complex queries without
any knowledge of XQuery. The graphical queries are then
interpreted and translated into XQuery. The front-end com-
municates with the backend via Ajax, posting requests in
XQuery to a servlet running on the backend. The servlet re-
sponds with the matches encoded in an XML format, which
is then interpreted by a variety of display modules.
The tree fragment query editor (see figures 8 and 9) in-
volves dragging and dropping elements on an assembly
pane, so that queries can be constructed in a step-by-step
fashion. At the moment, structural nodes can be combined
by dominance, precedence, and secondary edge relations.
The structures defined by these graphs mirror the structures
to be found. Each node may contain one or more conditions
linked by boolean connectives that help to refine the node
classes allowed in the structures. Any structural element in
this representation may be given search focus, determining
which parts of the structure are returned by the query. This
is a helpful function for users who are not interested in see-
ing entire trees, but who only want to extract lists of, for ex-
ample, verbs that occur in a specific construction. We plan
to realise a set of functions that can be roughly compared to

Figure 10: The front-end in tree display mode

Figure 11: Browsing a corpus (yellow nodes are collapsed)

TIGERSearch’s feature set (Lezius, 2002) enhanced by our
specific requirements, i. e., multi-layer querying and query
expansion through ontologies.
The types of conditions that can be imposed onto structure
nodes are determined by the currently selected ontology.
For ontology-based querying the graphical front-end needs
a list of tag or class names that are formally modelled by
the ontology and corresponding descriptions. For all OWL
ontologies used in the system we compile these lists that
are represented in a simple XML format. When the user
chooses an ontology, the front-end retrieves the correspond-
ing file and locally stores the annotation model that deter-
mines which condition elements are at the user’s disposal.
Tree fragment queries are not the only type of queries al-
lowed by the front-end. It also allows plain text and regular
expression queries. Experienced users can formulate their
queries in XQuery directly, or they can fine-tune queries
initially generated graphically. Query templates for other
applications will add to the usability of the platform.

Our aim is to give the user a variety of options to view and
to explore results. Four different major display modes are
already implemented: plain text view, XML view, graphical
tree view and timeline view. Hyperbolic trees and KWIC
will be added soon. Display modes are designed to be mod-
ular, which means that additional display modules may eas-
ily be added if the need arises. The graphical tree display
allows collapsing nodes (see figure 10) to prune irrelevant
parts of the tree for a better overview, different zoom lev-
els and different display styles. Currently, users can choose
whether they want squared or direct edges and whether they
want the leaf nodes to be displayed on one level.
The bulk of the development efforts so far has gone into the
widgets for tree fragment queries and tree viewing. There
were a few major technological obstacles caused by a lack
of support for dynamic SVG in most mainstream browsers
and the fact that their implementations of the <canvas> ele-
ment are still far from mature (in particular, character treat-
ment can be considered inconsistent – if present at all), but
these problems have been solved by now. With the graph-
ical user interface largely in place, development has now
turned towards the non-trivial parts of XQuery generation.
For performance reasons, as many query components as
possible have to be represented using XPath expressions,
which can cause problems because secondary edges might
result in structures that are less constrained than trees.

7. Conclusions and Future Work

We presented an approach to querying XML-annotated cor-
pora using standard techniques such as XPath and XQuery.
As modern corpora are annotated on several layers, we ex-
tended the standard functionality of an XML database so
that multi-rooted trees, representing one such annotation
layer each, can be queried. As our web-based sustainability
platform has to cope with arbitrary annotation formats, we
built an OWL ontology that encapsulates knowledge about
the tag sets used in these multiple and heterogeneous an-
notation schemes. The ontology can be used for query ex-
pansion, so that knowledge of the underlying data formats
is not required when querying the corpora using the graph-
ical user interface. This GUI provides an intuitive, modern,
flexible, and powerful search interface with several differ-
ent query and visualisation modes.
As our project is still work in progress, we plan to extend
the functionality of the platform in several ways. Currently
under construction is a web-interface that enables users to
explore extensive sets of metadata associated with the cor-
pora. While these files are also stored in an XML database,
we use a relational database to represent user accounts, re-
sources, and access control lists, see (Rehm et al., 2008).
Furthermore, we plan to upgrade and enhance several as-
pects of the GUI. In addition to a substantial overhaul of the
interface in order to improve its usability, we will integrate
graphical query templates and saved searches that act like
bookmarks in a web browser. For their representation we
will use an XML-based format to store all necessary data in
one place: the query template itself (i. e., an XQuery frag-
ment), the search result datatype, the annotation layer the
query refers to, and a general description of the query.

Acknowledgments Part of the research on AnnoLab was sup-
ported by a grant from Deutsche Forschungsgemeinschaft (DFG)
within the project Linguistische Profile interdisziplinärer Register

(Technische Universiät Darmstadt). Part of the research presented
was supported by a grant from Deutsche Forschungsgemeinschaft

within the project Nachhaltigkeit linguistischer Daten.

8. References
W. Alink, R. Bhoedjang, A. de Vries, and P. Boncz. 2006. Efficient XQuery Support

for Stand-Off Annotation. In Proc. of the Int. Workshop on XQuery Implementa-

tion, Experience and Perspectives (XIME-P 2006), Chicago, June.
S. Bird and M. Liberman. 2001. A Formal Framework for Linguistic Annotation.

Speech Communication, 33(1/2):23–60.
S. Bird, Y. Chen, S. B. Davidson, H. Lee, and Y. Zheng. 2006. Designing and Eval-

uating an XPath Dialect for Linguistic Queries. In Proc. of the 22nd Int. Conf. on

Data Engineering (ICDE 2006), pages 52–61.
S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König, W. Lezius,

C. Rohrer, G. Smith, and H. Uszkoreit. 2003. TIGER: Linguistic Interpretation
of a German Corpus. Journal of Language and Computation.

J. Carletta, J. Kilgour, T. J. O’Donnell, S. Evert, and H. Voormann. 2003. The NITE
Object Model Library for Handling Structured Linguistic Annotation on Multi-
modal Data Sets. In Proc. of the EACL Workshop on Language Technology and

the Semantic Web (3rd Workshop on NLP and XML).
C. Chiarcos. 2007. An Ontology of Linguistic Annotation: Word Classes and Mor-

phology. In Proc. of DIALOG 2007.
G. A. de Cea, G.-P. Asunción, I. Álvarez de Mon, and A. Pareja-Lora. 2004. Onto-

Tag’s Linguistic Ontologies: Improving Semantic Web Annotations for a Better
Language Understanding in Machines. In Proc. of ITCC’04, pages 124–128.

S. Dipper, E. Hinrichs, T. Schmidt, A. Wagner, and A. Witt. 2006. Sustainability
of Linguistic Resources. In Proc. of the LREC 2006 Satellite Workshop Merging

and Layering Linguistic Information, pages 48–54, Genoa, May.
S. Dipper, M. Götze, U. Küssner, and M. Stede. 2007a. Representing and Querying

Standoff XML. In G. Rehm, A. Witt, and L. Lemnitzer, editors, Data Structures

for Linguistic Resources and Applications, pages 337–346. Narr, Tübingen.
S. Dipper, M. Götze, and S. Skopeteas, editors. 2007b. Information Structure in

Cross-Linguistic Corpora: Annotation Guidelines for Phonology, Morphology,

Syntax, Semantics, and Information Structure, volume 7 of ISIS.
R. Eckart and E. Teich. 2007. An XML-Based Data Model for Flexible Representa-

tion and Query of Linguistically Interpreted Corpora. In G. Rehm, A. Witt, and
L. Lemnitzer, editors, Data Structures for Linguistic Resources and Applications.
Narr, Tübingen.

S. Farrar and D. T. Langendoen. 2003. A Linguistic Ontology for the Semantic Web.
GLOT International, 3:97–100.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES: An XML-based Standard for
Linguistic Corpora. In Proc. of the Second Language Resources and Evaluation

Conf. (LREC), pages 825–830, Athens.
T. Lehmberg and K. Wörner. 2007. Annotation Standards. In A. Lüdeling and

M. Kytö, editors, Corpus Linguistics, Handbücher zur Sprach- und Kommunika-
tionswissenschaft (HSK). de Gruyter, Berlin, New York.

W. Lezius. 2002. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. Ph.D.
thesis, University of Stuttgart.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313–330.

M. Monachini, C. Soria, and M. Ulivieri. 2005. Evaluation of Existing Standards for
NLP Lexica. Draft 1.1. Technical report, LIRICS, October, 31st.

G. Rehm, R. Eckart, and C. Chiarcos. 2007. An OWL- and XQuery-Based Mecha-
nism for the Retrieval of Linguistic Patterns from XML-Corpora. In Int. Conf.

Recent Advances in Natural Language Proc. (RANLP 2007), pages 510–514,
Borovets, September.

G. Rehm, O. Schonefeld, A. Witt, T. Lehmberg, C. Chiarcos, H. Bechara,
F. Eishold, K. Evang, M. Leshtanska, A. Savkov, and M. Stark. 2008. The
Metadata-Database of a Next Generation Sustainability Web-Platform for Lan-
guage Resources. In Proc. of the 6th Language Resources and Evaluation Conf.

(LREC 2008), Marrakech, May.
G. Sampson. 1995. English for the Computer. The SUSANNE Corpus and Analytic

Scheme. Clarendon, Oxford.
A. Schiller, S. Teufel, and C. Stockert. 1999. Guidelines für das Tagging deutscher

Textcorpora mit STTS. Technical report, Univ. of Stuttgart, Univ. of Tübingen.
T. Schmidt, C. Chiarcos, T. Lehmberg, G. Rehm, A. Witt, and E. Hinrichs. 2006.

Avoiding Data Graveyards: From Heterogeneous Data Collected in Multiple Re-
search Projects to Sustainable Linguistic Resources. In Proc. of the E-MELD

2006 Workshop on Digital Language Documentation: Tools and Standards – The

State of the Art, East Lansing, June.
T. Schmidt. 2005. Time Based Data Models and the TEI’s Guidelines for Transcrip-

tion of Speech. Working Papers in Multilingualism, Series B, 62.
C.M. Sperberg-McQueen and L. Burnard, editors. 2002. TEI P4: Guidelines for

Electronic Text Encoding and Interchange. TEI Consortium.
H. Telljohann, E. Hinrichs, and S. Kübler. 2004. The TüBa-D/Z Treebank – Anno-

tating German with a Context-Free Backbone. In Proc. of the Fourth Int. Conf.

on Language Resources and Evaluation (LREC 2004), Lisbon.
A. Witt, O. Schonefeld, G. Rehm, J. Khoo, and K. Evang. 2007. On the Loss-

less Transformation of Single-File, Multi-Layer Annotations into Multi-Rooted
Trees. In B. T. Usdin, editor, Extreme Markup Languages 2007, Montréal.

K. Wörner, A. Witt, G. Rehm, and S. Dipper. 2006. Modelling Linguistic Data
Structures. In B. T. Usdin, editor, Extreme Markup Languages 2006, Montréal.

